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Abstract 

If a mixed organic solvent is added to a ribosome 
solution and stored at 277 K in a crystallization 
chamber, thin lamellae of a few ~ diameter can be 
obtained. Under the electron microscope, tetragonal 
face-centred macrocells of b = 40 and c = 55 nm 
are visible. These findings are substantiated by X-ray 
small- and wide-angle diffraction which leads 
to macrocells of b = 42 and c = 52 nm and estab- 
lishes the third dimension of the macrocell with 
a = 42 nm. Mainly Okl reflections appear. From 
their line widths, it follows that each lamella consists of 
at least 15 × 15 × 15 macrocells with small 
paracrystalline distortions gs - 1.5 %, whilst their 6 × 8 
× 12 subceUs with a 0 = 7.1, b 0 = 5.3 and c o = 4.3 nm 
have large fibrillary distortions in the bc plane, similar 
to the aggregation of microparacrystals in stretched 
and annealed polymers. With a new method, the folding 
root of the Q function projected on the b axis can be 
analysed. Two compounds are placed in each macro- 
cell, each consisting of about 136 cylinders of about 2.0 
nm diameter and 7 nm length. They are aligned to 
fibrils of different lengths orthogonal to the bc plane and 
occupy about 47% of the macrocell. Ihe  residual 
volume is filled up with an 'amorphous phase' as in 
semicrystalline polymers. A comprehensive study of the 
existing literature leads to the conclusion that the 
'crystalline phase' consists of two 70S ribosome 
tetramers and that the cylinders are obviously parts of 
two-stranded helices, whilst most of the RNA proteins 
are in the 'amorphous phase'. The biological signifi- 
cance of the ribosome crystals and the paracrystalline 
sublattice is described in detail in the Discussion. 

I. Introduction 

More and more papers have recently taken cognizance 
of the paracrystalline character of biogenetic matter. 
An outstanding example is native collagen from rat tail 
(Nemetschek & Hosemann, 1973a,b; Hosemann & 
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Nemetschek, 1973; Hosemann, Bonart & Nemet- 
schek, 1974; Hosemann, Dreissig & Nemetschek, 
1974; Hosemann, Weick, Vogel & M/iller, 1974; 
Dreissig, Hosemann & Nemetschek, 1974) and the 
understanding of its calcification (Newesely, Hose- 
mann & Uther, 1980). Wheeler & Lewis (1977) stated, 
for instance, 'The paracrystalline state may be regarded 
as one which is intermediate between amorphous and 
crystalline and will have properties between those of 
these two states. Having more disordered atomic 
arrangements than exist in the crystalline state, 
paracrystalline materials are more reactive, so that 
with a structure of this type bone apatite will more 
readily be able to fulfil its biological role of calcium 
ion cont ro l . . . ' .  

In the last 20 years, there has been enormous 
progress in our knowledge of the composition and 
interaction of ribosomal components. But until now 
very little has been known about their physical 
structure. Various X-ray scattering experiments have 
been made of ribosomes of different types of cells with 
dilute solutions or with concentrated gels by Zubay & 
Wilkins (1960), Klug, Holmes & Finch (1961), 
Langridge & Holmes (1962), Hill, Thompson & 
Anderegg (1969) and Venable, Spencer & Ward 
(1970). Small-angle X-ray studies have also been 
carried out on isolated ribosomal RNA by Rich & 
Watson (1954), Fuller (1961), Brown & Zubay (1960), 
Timasheff, Witz and Luzzati (1961), Spencer, Pigram 
& Littlechild (1969), Dibble (1964), Connors & 
Beeman (1972), Hill & Fessenden (1974) and Folk- 
hard, Pilz, Kratky, Garrett & St6ffler (1975). 

Moreover, a large number of electron-microscopical 
investigations have been conducted on the structure of 
ribosomes (Hall & Slayter, 1959; Huxley & Zubay, 
1960; Hart, 1962, 1965; Spirin, Kiselev, Shakulov & 
Bogdanov, 1963; Nanninga, 1967, 1968; Bruskov & 
Kiselev, 1968; Lubin, 1968; Nonomura, Blobel & 
Sabatini, 1971; Tischendorf, Zeichhardt & St6ffler, 
1975). Further details concerning the distribution of 
protein and RNA in ribosomal subunits has been 
provided by the neutron scattering studies of Moore, 
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Engelman & Schoenborn (1974, 1975). They found a 
radius of gyration for the 30S subunit of 7.14 nm and 
for the 70S a value of 7.8 nm, and hence a diameter of 
18 and 20 nm respectively. Similar values have been 
established with neutron scattering by Parfait, Koch, 
Crichton, Haas & Stuhrmann (1978) (6.85 and 7.8 nm 
for the 30S and 50S, respectively). 

X-ray small-angle scattering studies of concentrated 
gels revealed a wide range of spacings from 0.33 to 30 
nm (Klug et al., 1961). Hill et al. (1969) describe the 
70S ribosome as a slightly asymmetric particle having 
dimensions 16 × 18 × 20 nm, as elucidated by X-ray 
scattering from diluted ribosome solutions. 

The hydrated ribosome has a series of characteristic 
X-ray scattering spacings which are identical with those 
found in diagrams of isolated rRNA (Zubay & Wilkins, 
1960; Klug et al., 1961). Spencer et al. (1969) 
demonstrated by X-ray diffraction studies of crystal- 
line specimens of fragments of rRNA that the crystal- 
lizable fragments contain regular two-stranded helices 
with a diffraction pattern like the A form of DNA. All 
these findings have been substantiated by chemo- 
physical studies (Schlessinger, 1960; Bush & Sheraga, 
1967), supporting the concept that about 70% of the 
rRNA in the ribosome has its bases stacked together 
and possesses many regions in which the single chain 
forms two-stranded helices by folding back upon itself. 
Langridge (1969; Langridge & Holmes, 1962) des- 
cribed a strong reflection from X-ray scattering 
experiments with concentrated ribosome gels as 'due to 
some periodicity in the ribosome'. On the basis of 
electron micrographs, Spirin et al. (1963), Hart (1965) 
and Bruskov & Kiselev (1968) describe some peri- 
odical features of 30S and 50S ribosomes. Recently 
published three-dimensional models of protein arrange- 
ments in the 30S subparticle, computed with protein 
near-neighbour information (Gaffney & Craven, 1978), 
also reveal some common features with ribosomal 
subceUs and spacings similar to those reported in the 
present paper. 

Electron micrographs do not afford sufficient reso- 
lution to provide any further information on the fine 
structure of the ribosome. This may be due to the 
disorder in the structure caused by dehydration during 
preparation and the irradiation with electrons. The 
hydration of the native ribosome is much higher than 
that of proteins or small spherical viruses (Lauffer & 
Bendet, 1954). This is also substantiated by the fact 
that X-ray diffraction patterns of ribosomes are 
strongly dependent on moisture content. In the dry 
state, a disordered diffraction pattern predominates 
which is largely attributed to the ribosomal proteins 
(Wilkins, Zubay & Wilson, 1959; Zubay & Wilkens, 
1960; Klug, Holmes & Finch, 1961). The average of 
the dimensions measured by electron microscopy is 
about 20% smaller than that measured by X-ray 
diffraction. 

Over the last 15 years, data from electron-micro- 
scopical investigations and chemical experiments have 
formed the basis for a series of models of the ribosomal 
structure (Bruskov & Kiselev, 1968; Cox, 1969; Hart, 
1965; Lubin, 1968; Nonomura et al., 1971; Spirin 
et al., 1963; Tischendorfet al., 1975). 

It is the aim of this paper to introduce the concept of 
paracrystallinity into the X-ray diffraction analysis of 
ribosomes. This modern analysis of X-ray diffraction 
has the big advantage of nondestructive testing of 
materials, which does not destroy the native state of 
biological systems and gives direct insight into their 
molecular structures, which are never crystalline. A 
comparison with electron micrographs based on this 
knowledge will confirm the obtained results. There is 
not space enough to explain the theory of paracrystals 
here in more detail. The six Appendices give some 
detailed explanations.* The reader may refer to the 
above mentioned papers on collagen and apatite and to 
the book by Hosemann & Bagchi (1962). 

II. Preparation of the sample and recording of the 
micrographs 

Escherichia coli cells were grown in a rich medium 
according to Deusser (1972) and harvested in their 
stationary phase. Isolation of 70S ribosomes was 
performed according to Weber (1972) with the excep- 
tion that a buffer containing 0.01 mol dm -a tris 
buffer/HC1, pH 7.8, 0.02 mol dm -3 MgC12, 0.1 mol 
dm -3 KCI, and 6 x 10 -a mol dm -a 2-mercaptoethanol 
was used. The 70S ribosomes were subjected to further 
purificotion by applying them to a linear sucrose 
gradient (Paradies, Kuckuk, Klotz, Zerban & Deusser, 
1974). 

The micrograph shown in Fig. 1 was obtained simply 
by removing a complete crystal from the mother liquor, 
staining in 0.5% uranyl acetate without any further 
preparation, and observing under the electron micro- 
scope. Previous fixation in glutaraldehyde reduced the 
stability of the crystalline structure such that the latter 
eventually disintegrated, at the latest during irradiation 
with electrons. The X-ray diffraction patterns were 
obtained from about 30 to 40 crystallites which had 
been removed from the crystallization chamber by 
means of a glass capillary and exposed for 3-10 d at 
277 K in an evacuated point-focusing Franks camera. 
The measurements were performed using nickel-filtered 
Cu Ka radiation and a water-cooled rotating anode, 
GX-13, Elliot-Marconi, UK. In addition, X-ray small- 
angle scattering of a suspension of highly concentrated 

* The six Appendices have been deposited with the British 
Library Lending Division as Supplementary Publication No. 
SUP 36159 (7 pp.). Copies may be obtained through The 
Executive Secretary, International Union of Crystallography, 5 
Abbey Square, Chester CH 1 2HU, England. 



538 T H E  P A R A C R Y S T A L L I N E  N A T U R E  OF C R Y S T A L L I Z E D  70S R I B O S O M E  L A M E L L A E  

70S ribosome preparation was performed (Fig. 2). This 
sample was precipitated in a test tube with the mixture 
of organic solvents used for crystallization. Other 
small-angle patterns were taken from the organic 
solvent solely to eliminate the contribution of the 
solvent from the 70S ribosome scattering (see dashed 
line in Fig. 3). 

The pinhole small-angle diagrams are limited at b = 
2 sin 0/2 = 0-02 nm -1 by the primary beam stop. 

Further investigations were conducted with slit focusing 
to obtain additional small-angle data. In order to obtain 
sharp reflections in the small-angle region of 0.02 <~ b < 
0.2 nm -1, only the vertical flat plate with point or slit 
focus was used. The film-to-specimen distance was 
usually 400 mm. After exposure the microcrystalline 
sample was redissolved and controlled by analytical 
ultracentrifugation for the 70S moving boundary. 

(a) 

..$,. 55nrn ~0# -~,.. ,i. 

4Ohm 

(b) (c) (d) 

Fig. 1. (a) Electron micrograph of a 'crystalline' specimen. The 
observed macrolattice shows step dislocations and, in the central 
part, fine horizontal lines orthogonal to the larger lattice edge of 
55 nm dividing it into six equidistant parts. (b) Face-centred 
macrocell and its size. (c) The structure calculated from X-ray 
small-angle scattering. (d) The same with diagonal stripes. For 
details see Fig. 15. 

IlL Indexing of the X-ray diagrams of the super- and 
sublattiee and their paracrystalline distortions 

The observed 51 netplane distances d o and their relative 
intensities are collected in Table 1. 41 of them can be 
described by Okl Miller indices and are plotted in the k!  
diagram of Fig. 4 with orthogonal axes b = 42 + 1 and 
c = 52 + 1 nm (see Kuckuk,  1977; Kuckuk & Paradies 
1980). The values d c calculated herefrom agree, within 
the error of experiments, with the observed values d o 
and the lattice cell dimensions observed in the electron 
microscope (Fig. I b). The a axis can be found easily 
from the strong reflections with d o = 18.4, 15.4 and 
13.5 nm and has the same value a = 42 + 1 nm as the b 
axis. Each superlattice cell contains therefore 6 x 8 x 
12 = 576 subcells. Crystal optics with polarized 
convergent light confirms that the crystals belong to the 
hexagonal or tetragonal system (Paradies et al., 1974; 
Kuckuk,  1977). In Fig. 1 this axis lies obviously 
orthogonal to the picture plane. We are concerned 
apparently with a crystal lamella expanded by the b and 
c axes. From the width of the first 20 reflections with 
1/d  o < 0.133 nm, one has to learn that the crystal 
membrane consists of at least 15 x 15 superlattice cells 
and has, hence, a lateral size of at least 600 to 800 nm. 
This again agrees with the electron picture of Fig. 1, 
where undistorted domains of this size are observable. 
All these values are collected in Table 2. 
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Fig. 2. Small-angle X-ray powder pattern of microcrystals of a 70S 
ribosome preparation: . . . .  the contribution of the precipitate 
and the solvent; the dotted area corresponds to the amorphous 
phase. 
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Fig. 3. The b 2 I(b) diagram of Fig. 2. The integral of the dotted area 
compared with that of the black part leads to 53% amorphous 
phase in the membrane. 
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The next interesting fact is that two strong peaks 
exist in the area of the reflections 080, 081,082,  084, 
090, 091 and 0,0,12, 0,1,12, 0,2,12, 0,3,12. Ob- 
viously, the b and c axes consist of 8 and 12 subperiods 
respectively. The strong reflections with d o = 4.25 and 

Table 1. X-ray powder diffraction data of  observed 
(d o) and calculated (de) netplane distances and their 

relative intensities Irel 

w very weak reflections measured with special optics, therefore not 
comparable with other intensities. 

h k l do(nm) dc(nm) /rel 
0 1 1 33.1 32.9 w 
0 0 2 26.3 26.0 w 
0 2 0 21.4 21.27 16 
1 2 0 18.4 19.03 18 
0 0 3* 17.2 17.24 15 
0 2 2 16.5 16.43 30 
1 2 2 15.4 15.33 13 
3 0 0 14.5 14.20 12 
3 1 0 13.5 13.45 18 
3 2 0 11.7 11.80 50 
0 3 3 10.8 10.95 31 
0 0 5* 10.3 10.34 19 
0 4 2 9.7 9.84 29 
3 1 4 9.3 9.32 11 
0 4 3* 8.9 8.93 10 
0 0 6 8.6 8.62 8 
0 2 6 7.96 7.99 23 
5 0 3 7.63 7.63 38 
6 0 0 7.05 7.09 49 
6 2 0 6.82 6.84 42 
0 0 8 6.39 6.44 18 
0 2 8 6.12 6.14 30 
7 0 2 5.89 5.92 34 
6 0 6 5.47 5.48 136 
0 8 0 t  5.32 5.32 428 
0 8 2 t  5.24 5.21 136 
0 8 4 t  4.92 4.92 35 
0 9 I t  4.75 4.75 136 
0 8 6 4.53 4.53 35 
0 0 12t 4.31 4.31 530 
0 2 12t 4.28 4.29 143 
6 8 0 t  4.25 4.25 188 
0 1 13t 4.22 4.22 133 
0 3 13t 4.12 4.12 85 
6 1 11 3-91 3.92 29 
6 0 12 3-72 3.69 126 

12 0 0 3.59 3.55 111 
7 0 12 3-51 3.52 30 
6 2 12 3-45 3.47 16 
0 8 12 3.32 3.34 82 
6 8 12 3.02 3.00 44 

12 0 12 2.75 2-74 82 
0 16 0 2.63 2.66 70 
6 16 0 2.52 2.51 81 
0 16 12 2.25 2-26 82 
0 8 24 2.01 2.00 64 

12 0 24 1.85 1.84 37 
24 8 0 1.69 1.69 28 
18 0 24 1.57 1.59 23 
0 0 36 1.43 1.44 13 
6 16 36 1.22 1.24 8 

* Reflections Okl with an odd sum of digits. 
t Reciprocal-lattice points within one broad strong peak. 

3.02 nm belong to the further ten reflections which 
cannot be indexed by OkL If one uses the above 
mentioned value of a = 42 nm, one finds their indices 
680 and 6,8,12. Table 1 shows that, by changing some 
Okl to hOl, nine reflections with h = 6 and four 
reflections with h = 12 can be found (see Fig. 5). In Fig. 
6, the remaining 28 reflections with h = 0 are plotted. 
The results are shown in Table 2. The weak reflections 
Okl for small reciprocal vectors b have even sums of 
digits except three reflections marked with * in Table 1. 
They indicate a face-centred projection of the macro- 
cell on the bc plane. The strong reflections signed with t 
in Table 1 overlap each other so much in Fig. 3 that 
they cannot be discriminated from even sums of digits. 
In Fig. 6, only the reflections with even sums of digits are 
plotted. The lattice has paracrystalline distortions. The 
cell edges fluctuate in length statistically by gs "" 1.5 %, 
as can be seen from the plot of the integral width ~b as a 
function of h 2 + k 2 + l 2 (see Fig. 7). One finds from 
(20),* at the intersection of the straight curve with the 
ordinate, a value 1IN ~ 0.0015 x 42, hence N ~ 15, 
which is used for calculating L a, L b and L c in Table 2. 
From the slope of the line in Fig. 7, one obtains for the 
relative statistical fluctuation of the macrocell edges b,c 
(see Appendix II), 

gs ~- 1.5%. 

As a consequence, the reflections with b > 0.1 nm-'  
merge into each other more and more (Appendix I) 
and the reflections outside the points of the aoboc o 
lattice disappear in the background. 

A remarkable fact is that, around the aoboc o lattice 
points, some neighbouring reflections of the abe lattice 
are also strong. This is a direct indication that the 
sublattice also contains paracrystalline distortions. Fig. 
8 shows, for example, the small-angle X-ray pattern of 
a stretched and annealed isotactic polypropylene (PP) 

* See Appendix I. 
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Fig. 4. Positions and intensities of 41 of the observed 51 reflections 
which can be indexed with Okl. Their intensities are indicated by 
the sizes of the spots. 
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Table 2. The lattice cells a,b,c of  the superlattice and ao,bo, c o of  the sublattice with dimensions La, Lb, L ~ o f  the 
superlattice 

gs, g,~ and gww are respectively the relative lattice distance fluctuations, gwv and gvw are tangential statistical displacements. 

Macrocell  a = ( 4 2 _ +  1)nm b = ( 4 2 + _  1) nm c = ( 5 2 +  1) nm 
L a ~ 600 nm L b >~ 600 nm L c >~ 700 nm 
gs ~ 1 . 5 %  gs ~ 1 . 5 %  gs _~1.5% 

Subcell a 0 = a / 6 = 7 . 1 n m  b 0 = b / 8 = 5 . 3 n m  c o = c / 1 2 = 4 . 3 n m  
- gvv "" 7% gww ~ -- 7% 
- gvw "" 12% gwv ~- 15% 

12" 
/ 

T 

2t ,  

/ 

T 
1Z- 

n • 

n 
[ ]  

0 

I I  

h = 6  

I I  

i n 
8 16 

h = 1 2  

i 

36 • 

I 

1 
24 

12" 

=k 

II 

h - - -18  

---k iz 0----k 12 
Fig. 5. hk l  reflections with h = 6,12,18 of  the macrolatt ice with a 

paracrystalline substructure oriented parallel. 
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Fig. 6. The same as in Fig. 5 for Okl. • Strong, • medium, 

• weak. 

sample (Loboda-Cackovic, Hosemann & Cackovic, 
1976). A strong diffuse peak exists in the fibre direction 
corresponding to a long period of the order of 20 nm 
which is the distance between the centres of lamella- 
like assemblies of microparacrystals with gik values of 
~ 10% (see Appendix I). If many such particle assem- 
blies are arranged three-dimensionally in a well defined 
superlattice, then the diffuse scattering of one assembly 
can never be observed and only its intensity at the 
reciprocal-lattice point of the superlattice (the Bragg 
window) is visible. The reflection 080 has therefore 
neighbouring peaks 082, 084 . . . .  ; the reflection 0,0,12 
has a neighbour at 0,2,12. This means that the 
sublattice aoboc o has lattice axes b o = b/8 and c o = 
c/12, which mostly change their direction in the b 0 and 
c o directions, whereas their lengths fluctuate less. If the 
index v indicates the direction of b 0 and w that of e o, 
then the paracrystalline statistical parameters gvw have 
values of about 

gvv~_gvw~_O.07; gvw~_O.12; gwv~_O.15 (1) 

(see Appendix II and Table 2). Fig. 9 shows an example 
of paracrystalline distortions of the type in (1), the only 
difference is that gw ~ gww ~ 0 and gvw ~- gwv ~- 0.28. 

t)bx I0-2 [nr~-i) 
¥ 

• , . , , 

1 . 5  A 

1 . o  

0 . 5  

' ' ' o '~ 0 5 nO 15 2 2 

---~ b2xiO-2 [nm-2] 

Fig. 7. The integral widths 6b of the reflections hkO as a function of 
b 2 = (2 sin 0/2) 2 reveal isotropic p~acrystalline distortions of the 
macrolattice ofg s ~ 1.5% and lattice sizes of more than 600 nm. 
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Fig. 8. Small-angle X-ray diagram of synthetic cold-stretched linear 
isotaetic polypropylene. The fibre axis is in the vertical direction. 

i 

(a) 

The higher orders of 010 and 001 are therefore better 
developed and 011 is much diffuser than in Fig. 6. It is 
essential that with this type of paracrystalline distor- 
tions the reflections 010 and 001 are much broadened 
in tangential directions. The motifs within the b0c 0 
lattice cells have therefore relatively well defined 
distances, but with varying directions. In synthetic 
polymers, on the other hand, the motifs are micro- 
paracrystals 10 to 30 nm in all three dimensions and 
densely packed together to form lamellae, which have 
g,,u values of the order of 10%. This gives rise to the 
diffractions shown in Fig. 8 where two meridional 
reflections are produced by a period of 20 to 40 nm, 
orthogonal to the lamellae surfaces. 

The next important question is" What is the content 
of a ribosome subcell? A first answer is that about 47% 
of the volume of a macrocell is 'crystalline' and 53% is 
'amorphous'. This can be calculated from the powder 
pattern of Fig. 2 in the b 2 I(b) plot of Fig. 3. The white 
field under the dashed curve gives the scattering of the 
solvent adapted in height to the intensity curves of Figs. 
2 and 3. The grey area between the white and black 
areas yields, after integration in the b 21 plot, 53%. This 
means that, similar to synthetic polymers, the crystal- 
line phase is imbedded in the amorphous phase. 

In the next section, it is shown that 47% of the 
subcells contain cylindrically shaped particles aligned 
parallel to the a axis. They form some well constructed 
compounds, within an abc lattice cell, which build up a 
superlattice as can be seen in Fig. 1. To understand the 
diffraction pattern, it is not necessary to know the ideas 
of shells. The mean electron density distribution of an 
abe lattice cell therefore can be recognized only through 
the Bragg windows at the positions of the reflections of 
the superlattice. The fluctuation between nth neigh- 
bours of these compounds increases with V/~ and the 
relative fluctuation of a sequence of n vectors c 0 or b 0 is 
therefore given by gvw/v/n or g,,,,/v/-n. This is the 
reason for the small value gs ~ 1.5 % in a superlattice. 
In synthetic polymers, on the other hand, the lamellae 
are not so well organized and build up bundles with 
tremendously fluctuating a,b,c axes. The Bragg win- 
dows now are not of the crystalline-like type, they are 
amorphous-like, and one therefore can observe directly 
the mean diffraction pattern of an a0b0c0 cell without 
being restricted by Bragg windows (Fig. 8). Never- 
theless, ribosomes and synthetic polymers have one 
feature in common: chain molecules in ribosomes are 
arranged parallel to the a axis, in synthetic polymers 
they are orthogonal to the lamellae. 

(b) 
Fig. 9. A two-dimensional parac~stal with distortions g~2 -- g21 - 

28% and gH = g22 TM 0%. (a) Two-dimensional point lattice 
model, (b) its Fraunhofer pattern. 

IV. Analysis of the paracrystalline Q function 

The inverse transformation of the observed intensity 
function I(b) is a three-dimensional function of the 
vector x in physical space; this does not reveal the 
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structure p(x) of the electron distribution but its 
convolution square (symbol 2; see for detail Appendix 
III): 

2 

~---1 I ( b )  = Q(x) = p(x) = f p(y) p(y + x) dy3; 

b = 2 sin 0/2. (2) 

In our case, I(b) is given by the integral intensities Ira, l 
of the reflections of the macrolattice. Now we intro- 
duce the normalized components u , v , w  of the space 
vector x, which are integers at the edges of the 
macrocells. We obtain from (2), 

Q(u, v, w) = ~. I(h,  k, l) exp [27~i(hu + kv + lw)]. 
k,k,l 

(3) 
Q(0, v, w), calculated from the relative intensity data of 
Table 1, is plotted in a perspective way in Fig. 10. In 
Fig. 11, the Fourier transform Q(v,w) of I(O,k,I) is 
drawn. According to Appendix IV, it is just the 
two-dimensional convolution square of the projection of 
the electron density distribution on the vw plane. Each 
subcell (b0e0) of the Q function contains a cylindrical 
density cloud whose axis is oriented parallel to the 7 nm 
long a 0 axis. The diameter of the cylinder depends, in 
contrast with the Patterson (1934) function, not only on 
the diameter of molecular strings, but also on their 
paracrystalline distortions (equation 1). The larger gwv 
value, for instance, points out that the cell edges b 0 have 
strongly varying directions. This gives rise to the 
density bands in Fig. 11 which connect neighbouring 
cylinders in the v direction. The cylinders with diameter 
D ~_ 2.9 nm are therefore composed of the real 
diameter D o of cylindrical molecules and their statistical 
paracrystalline displacement. The product of  gw, , × av = 
0.12 x 5.3 = 0.64 nm is, for instance, according to (1) 
and (18), the fluctuation of the cylinders in the v 
direction. The diameter D o of the convolution square of 
the cylindrical molecules is therefore given by 

D O = (D 2-  0.642) w2 ~_ 2.8 nm (4) 

(see Appendix V). The diameters of the cylinders 
themselves are therefore given by 

Do~V/2 ~_ 2.0 nm (5) 

because they are the convolution root of the cylinders 
of the Q function. These cylinders contain obviously the 
above mentioned 47% electrons of the crystalline 
phase. Although the Q function of Fig. 10 shows a 
nearly uniform distribution of the cylinders in the 
macrocell, its convolution root/~ will nevertheless show 
a distinct distribution in the macrocell. The cylinders 
build up two clusters within one macrocell as will be 
shown below. 

V. Distribution of  cylinders in a macrocell 

As mentioned above, the cylinders of the density p(x) 
are not distributed uniformly in a _macrocell, because 
the weights of the cylinders of the Q function (Fig. 11) 
vary slightly. As shown below, they build up two 
clusters. With regard to the lack of quantitative 
intensity data, we will restrict our discussion to the 
analysis of the reflections 0k0. 

From (3) and Appendix IV, one learns that 

Z I(0k0) exp (2nikv) = Q(v) = f f Q(u ,v ,w)  du dw. 
k (6) 

Strictly speaking, one has to integrate solely over even k 
values, because the lattice cell is face-centred. For 
convenience we integrate over all integer k values, 

~'b 

c 

Fig. I0. The function Q(O,v,w) calculated by Fourier transfor- 
mation of I(hkl) plotted perspectively orthogonal, b and c are the 
axes of the macrocell. 
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because only the strong reflections near k = 8 are 
important and are not even resolved in single recipro- 
cal-lattice points on account of the paracrystalline gs 
value which allows them to merge into each other as 
explained above. The advantage of this procedure is 
that we have to reconvolute now only a primitive 
superlattice cell. Equation (6) is, according to Appendix 
IV, nothing but the one-dimensional convolution square 
of the two-dimensional__projection/~ ofp of this primitive 
cell along the b axis. Q(v) is plotted in Fig. 12 which 
shows, according to Fig. 11, eight peaks within one 
macrolattice cell, all having nearly the same shape. 
Now we are engaged in a one-dimensional problem: the 
deciphering of the two-dimensional projection of Q on 
the v axis. If/~0 is the two-dimensional projection of the 
electron density of one macrocell, then the density 
projection/~ of the whole crystal is given by 

~(v) = Y/~o(V - n); n integer. (7) 
n 

In each macrocell, n = 0, 1, 2 , . . . ,  1, 2, . . . .  with b = 42 
nm, the same density projection/~0 exists. It has values 
different from zero for v = 0 to 1, v = 1 to 2, v = 2 to 3 
and so on. The Q (v) function, as its convolution square 
[see (2)], is given by 

2 

y 0o = L. (8) 
n 

Unfortunately, (~0, the convolution square of /~0, 
extends over two macrocells from v = - I  to + 1 or 
from v -- 0 t_o +2 and so on. Therefore, we have two 
overlapping Q0 functions in the lattice cell 0 _< I vl _< 1 
of Fig. 12, the right part of Qo(v) and the left part of 
Qo(v- 1). 

VI. Convolution root of the Qo function 

We have discussed above the fact that each macrocell 
produces obviously continuous more or less diffuse 

~(v) 1 

I I  

0 ! / /  , , 

Fig. 12. Function Q(v) calculated by Fourier transformation 
I(0k0). The background is practically given by -,4 cos 2nv and 
disappears if the reflection I(010) = A is introduced into equation 
(6). 

scattering similar to the small-angle scattering of 
polypropylene (PP) (Fig. 8). Many such macrocells build 
up the ribosome paracrystal and, as a consequence, the 
continuous scattering function Q0 of one macrocell is 
only observable at the points of reciprocal superlattices 
(a*,b*,c*). Therefore, one can obtain the scattering 
function of one macrocell by interpolation between the 
observable intensity peaks hkL Ambiguity does not 
exist, because Q0 has no zero values. To calculate the 
convolution root, it is sufficient to introduce values also 
at the lattice points k + ½. The function Q2(/)) was  
calculated in this way (Fig. 13): 

QE(V) = ~ I(O,k/2,0) exp (nikv), k integer. (9) 
k 

The reciprocal-lattice points have now only half of their 
former distances. QE(V) is therefore given by 

Q2(v) = Z Qo(v + 2n). (10) 
n 

Since the distance of th_e Q0 function is now 2n, no 
overlapping of adjacent Q0 functions can take place. The 
background in Figs. 12 and 13 is an artefact, because, 
by calculating Q(v) with (6), the value I(010) was 
omitted arbitrarily because I(000) is not observable and 
hence I(010) cannot be obtained as an average of the 
neighbouring I values. The result is a diffuse back- 
ground in Q, 

uQ ~ - A  cos 2n v, 

which can be removed by introducing I(010) = A. As a 
consequence, the diffuse background uQ2 in Fig. 13 has 
also no physical meaning. It explains easily the 
background uQ of Fig. 12 because, according to (8), 

uQ(O) = uQ(n)  = uQo(O) + uQ0(1)= 0 + 6.5 

uQ(½) = 2uQ0(½)= 10; 
hence 

,,0(½) - ,,0(0) = 3.5. 

This is just the difference between the largest and 
smallest values of uQ drawn in Fig. 12. 

m 

Q2 (v) 

10 

0 
! 1 m 

0 0.5 ~ v .0 

Fig. 13. Function ~2(v) calculated by Fourier transformation of 
I(O,k/2,0). The diffuse background has no physical meaning (see 
Fig. 12). 
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The values Aq o f  the maxima of the eigh_t distin- 
guished peaks of  Q (v) and the values A0q of  02(U) are 
collected in Table 3. The error of  the A0q values at the 
boundaries  of  Q2(u) is relatively large. This uncertainty 
can be cancelled, more or less, because, from the above 
discussed overlapping effect, one obtains the relation 

Ao.q + Ao,8_q= A q. (11) 

Such calculated A 0q values are collected in the third line 
of  Table 3 and plotted in Fig. 14. f3(v) itself has seven 
distinct values Bq, which are also collected in Table 3. 
F rom (2), follows 

7 

A o ~ = A o , =  ~ Bq+,Bq. (12) 
q = 0  

We will deduce now a recursion formula and assume 
that  the A0, values have an error a , ,  Bq an error bq, 
whilst A0, and Bq are the real parameters  of the 
structure. Then, one obtains,  instead of  (12), 

7 

A0, , + a , =  ~ (Bq+,  + bq+,,)(Bq + bq). (13) 
q = 0  

Removing herefrom the terms of  (12), one obtains, 
neglecting b 2, 

7 

a , =  Z (Bq+,, bq + Bqbq+,,). (14) 
q = 0  

This can be t ransformed into a matrix equation 

a,, = (Tq,,) bq with 

0 < (q + n) < 7; 

(r~.) = (8~+.  + ~a_.) 

0 < ( q - n )  < 7. 
(15) 

Herefrom one obtains directly the error values bq of  Bq 
as a function of  the error values a,,, 

(Tr.) 
bq - (16) 

Tq. 

The difference between solutions I, II and III is that  the 
tentative first solution I is symmetrical  with respect to q 
= 3.5, while the iterated solutions II and III both have a 
kind of  symmetry  centre at q = 3. This shift of  q is 
without any significance as long as the boundaries  of  
the macrocell  do not interfere. The position of  a 
macrocell  then is absolutely arbi trary and the same is 
true for the subcells. Tr, is the reciprocal matrix which 
is identical with all terms of  Tq, except those in the 
column r = q. Here the Tq, terms are replaced by aq 
values.* 

A first approvable  solution I is given in Table 3 with 
its differences aq between calculated and measured 
weights Aoq. Most of  them are of  the order of  a few 
percent. The value of  a 6 is extremely large (~50%) .  
These errors are introduced into (16). By computer ,  one 
obtains the correction terms b k for the first solution. 
The corrected Bq values yield new A 0, values from (12) 

* A similar procedure for calculation of the convolution square 
root was published by Bradaczek & Luger (1978). 
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Fig. 14. Weights of the peaks of Q(q) (O), Qo(q) (O) and Qo(8 - q) 

(10). 

Table 3. The terms Aq of Q, Aoq of Q o and three different solutions I, II, III  for the convolution root Bq and the 
failures aq of Aq 

Nq number of subcells within the cross sections q of a tetramer orthogonal to the b axis. 

Solution 
number q = 8v 0 1 2 3 4 5 6 7 

Aq 152 143 130 103 95 103 130 142 
Aoq 152 136 110 73 47 30 20 7 

I Bq/V/5 1 1 2 3 3 2 1 1 
aq 2 1 0 -7  -1 5 10 2 

II Bq/V/-5 0.7 2.2 2.6 3.1 2.4 1.7 0.5 1.1 
aq --4 0.5 2.5 --1 -0.5 0.5 0.15 0.01 

III Bq/k/5 1.1 1.2 2.9 2.7 2.9 1.7 1.1 0.5 
aq --4 0.6 2.5 --1 --0.5 0.5 0.16 0.01 

½(II +III) Bq/X/'-5 0.9 1.7 2.7 2.9 2.7 1.7 0.8 0-8 
IV Nq 2 9 15 25 30 25 15 9 2 

8 

152 
0 
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with new aq errors. The process is iterated until the 
mean square deviation 

1 N K-" 
a~ 

N ( N - -  1) 

reaches a minimum. In most cases this happens after 
less than 100 iteration steps. This solution II is also 
tabulated in Table 3. A new iteration process was 
started and led to solution III. Within the error of the 
experiment, it is equivalent to solution II. 

It is interesting to note that structures without a 
centre of symmetry can be analysed in the same way as 
those which have a symmetry centre. Two cases have 
to be differentiated: 

(1) The A0q are the exact values of a convolution 
product. The matrix I Tr, ,I becomes singular if the exact 
solution is found. The mean square deviation then 
converges to zero and the process is terminated. On 
account of the inaccuracy of intensity measurements 
this case is an academic one. 

(2) If the A0q values have errors, only an approxi- 
mate solution can be found. The minimal mean square 
deviation depends on these errors. If we continue the 
iteration process, it increases again. Another minimum 
with different solution may be obtained later on. 
Moreover, the solution also depends somewhat on the 
initial Bq values. In order to obtain all possible 
solutions, a Monte-Carlo procedure was applied to 
choose the starting values of Bq. It is interesting to note 
that in the present example only two slightly different 
solutions II and III were found with very small 
deviations aq from the X-ray data of A oq (Table 3). 
Now we have to take into account the fact that the 
projection of the macrocell on the vw plane is face 
centred as proved by the electron micrograph (Fig. 1 a) 
and the X-ray Okl reflection at small b values, whose 
sum of digits is even (Table 1) except for three 
reflections (*). 

The respective body-centred Q function shows, in 
contrast to Figs. 11 and 12, higher peaks not only at the 
edges but also in the centre, v, w = ½, ½. The function is 
still quite inappropriate for calculating the convolution 
root because one more overlapping Q0 function occurs 
than in Fig. 12. Therefore we neglected its calculation. 

VII. Discuss ion of  the structure 

Small-angle X-ray diffraction proves that, by artificial 
crystallization, ribosomes can build up microcrystallites 
bigger than 600 × 600 nm with face-centred tetragonal 
macrocells of 42 x 52 nm. This is in good agreement 
with electron micrographs. Orthogonal to the surface of 
the bc plane there appear parallel aligned cylinders, 
about 2.0 nm in diameter, with fibrillar paracrystalline 
distortions. Within one macrocell, 6 × 8 × 12 = 576 

subcells exist. About 47% of them belong to the 
face-centred positioned compounds. Therefore, each of 
them consists of 

½ x 0.47 x 576 _ 136 subcells. (17) 

The height of the macrocell in the fibre direction is 42 
nm. Therefore, each cylinder is ~ of this in length = 7.2 
nm and about 2.0 nm in diameter. This agrees well with 
the size of the two-stranded fragments of r R N A  
obtained by digestion with enzymes which only affect 
the single-chain regions of the RNA (Timasheff et aL, 
1961; Cox & Kanagalingam, 1967; Spencer et al., 
1969). From all these facts, and considering the 
literature reviewed in the Introduction, we conclude that 
the cylinders are the two-stranded helices first detected 
by Schlessinger (1960), and amply confirmed by many 
subsequent works. The two components consisting of 
136 subcells each are tetramers of 70S ribosomes each 
containing 136:4 = 34 cylinders. 

A method, first published by Hosemann & Bagchi 
(1962), is applied to calculate the convolution root of 
the projection of the Q function on the b axis. The first 
direct information on the three-dimensional structure of 
a tetramer of 70S ribosomes can be obtained in this 
way. If we take the averaged Bq values of Table 3,11 
and 3,11I, we obtain, after multiplying them by ~10, 
integers Nq (see Table 3,IV) which show the total sum 
of ~136. They define the number of subcells within 
each cross section of one tetramer orthogonal to the b 
axis. 

A comparison of the experimental density of the 
crystal, obtained by the flotation method, with 
theoretical density calculations leads to the same 
conclusion that about eight ribosomes are placed within 
one macrocell and that about half of the macrocell 
volume is filled with organic solvent. 

Fig. 15 shows a schematic picture of all essentials of 
this paper. Each cylinder represents a subcell of the 
crystalline-like phase. Two tetramers are in one 
macrocell. The first has its centre at (q,r) = (3,4), the 
other at (7,10) (only one half of the second tetramer is 
drawn). The number Nq of subcells within one tetramer 
is represented by the number of cylinders. The open 
question, how the cylinders are distributed within each 
cross section q, remains. But one thing is evident: the 
tetramers have shapes with thin tails in both directions 
parallel to the b axis as drawn in Fig. 1 (c). If they are 
deformed (Fig. ld), the diagonal stripes of Fig. 1 (a) are 
understandable. The model of Tischendorf et aL (1975) 
also shows such kinds of tails. The columns of cylinders 
are statistically shifted (see Fig. 9), mathematically 
expressed by the large gvw and gwv values of (1). The 
inner structure of the two-stranded helices depends on 
the wide-angle reflections which are not yet taken into 
account by our analysis. Their paracrystalline flexi- 
bility nevertheless allows them to build up a reliable 
undistorted macrolattice as explained above. The 
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ribosomal proteins different in size, shape and primary 
sequence generate obviously the large liquid-like distor- 
tions within the macrolattice cells similar to the 
paracrystalline structure of synthetic polymers. 

The shape of the tetramers can be described now not 
only by the radius of gyration, but also by three 
different orthogonal axes. As shown in Appendix VI, 
the average size of a tetramer of 70S ribosomes in the 
directions of the axes a,b,c of the macrolattice can be 
calculated as 34 x 29 x 17 nm _~ 16 700 nm 3, whilst 
the accurate value for the volume of one tetramer is 
given by (17) and Table 2 as 136 x 7.1 x 5.3 x 4.3 
22 000 nm 3. In agreement, Hill et al. (1969) found for 
the volume of one 70S ribosome about a quarter of this 
value: 18 x 20 x 16 = 5760 nm 3. 

In Fig. 1 (a) one can observe a domain of about ten 
macrocells with a fine striation containing six parallel 
streaks within a macrocell orthogonal to the c axis. This 
can be easily explained by the model of Fig. 15. In the 
cross sections q = 3 and 7, three cylinders are plotted 
with lengths 6 x 7.1 nm alternating with three cylinders 
4 x 7.1 nm long, the former at odd and the latter at 
even values of 12w. They produce the six streaks per 
lattice cell orthogonal to the c axis. The small domain of 
striation can be explained by the fact that the subcells 
have large paracrystalline fibre-like distortions defined 
by (18). It is no wonder that the orientation of these 

i 
q 

Nq 
10 2 12w 

15 25 

Fig. 15. A model of the structure of the ribosome membrane. The 
cylinders represent the two-stranded helices and are arranged 
orthogonal to the bc membrane plane. They build up two 
tetramers each containing 136 subcells which are in face-centred 
positions. Their number per section q within one tetramer is given 
by Nq, their distribution within each area is arbitrarily chosen, 
but performed in such a way that the shape of the tetramer is 
similar to that in Fig. l(c). The centres of the tetramers lie at 
q,12w = 3,4 and 7,10 and 1,10. The tetramer 1,10 and the outer 
part of the tetramer 7,10 are not plotted for convenience. The 
neighbouring cylinders on lines 3,12w and 7,12w have alternating 
lengths 6a 0 and 4a 0 which produce the fine striation orthogonal 
to the c axes in the centre of Fig. 1 (a). The staggered contours of 
the fibrils symbolize their paracrystalline distortions. 

domains is not everywhere in a position to be detected 
in the electron microscope. There are of course many 
other possible structures. Our model is just one of these 
possibilities. Nevertheless, the quantitative parameters 
given in Tables 1-3 are reliable and define to a high 
degree most of the solutions. 

The crystalline arrangement of the different two- 
stranded helices (Fig. 15) of ribosomal R N A  parallel to 
the a axis within the ribosome provides an explanation 
for some well known characteristics of ribosomes: (1) 
the highly organized and compact configuration; (2) 
the reconstruction of ribosomes from their basic 
components (Nomura, 1973); and (3) the large exo- 
thermic enthalpy change during refolding (Wong, Dfinn 
& Binford, 1974). It is interesting to note that basic 
theoretical considerations of the evolution of biological 
macromolecules, especially RNA, lead to a hair- 
pin-like model of parallel aligned double-stranded R N A  
(Kuhn, 1980) like the one of rRNA described in our 
paper. 

Microcrystals of 80S ribosomes can be obtained 
within the cell by hypothermia (Byers, 1967; Unwin & 
Taddai, 1977). This seems to be quite a common 
feature in nature during hibernation. This procedure 
ensures an enormous reduction of the energy turnover 
per cell because of reduction of the protein synthesis to 
a very low level. In addition, Yonath (1980) showed 
that crystallized 50S subunits of bacillus ribosomes are 
biologically fully active after a long period of crystal- 
line storage. 

Improved techniques are necessary to demonstrate 
the presence of tetramers of 70S ribosomes in electron 
micrographs of single crystals and to obtain more 
stable and larger crystals for X-ray diffraction. The 
me~urement  of the intensity I(000) would make it 
possible, in addition, to calculate the absolute electron 
density distribution. 

We are much indebted to the Deutsche Forschungs- 
gemeinschaft, and the Friedrich-Ebert-Stiftung, Bonn- 
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